
RspSim – A Simulation Model
of the Reliable Server Pooling Framework

Thomas Dreibholz, Martin Becke, Hakim Adhari, Erwin P. Rathgeb
University of Duisburg-Essen, Institute for Experimental Mathematics

Ellernstraße 29, 45326 Essen, Germany
{dreibh, martin.becke, hakim.adhari, rathgeb}@iem.uni-due.de

Abstract—This code contribution paper provides an overview of
the RSPSIM model, which is a simulation model for the Reliable
Server Pooling (RSerPool) framework. RSerPool denotes an IETF
standard for the management of server pools and sessions with
these pools. Such mechanisms are also crucial in the context of
cloud computing research.12

Keywords: Reliable Server Pooling, Simulation, Evaluation,
Model, Cloud Computing

I. INTRODUCTION

Service availability is becoming increasingly important in the
Internet. However, there had been no generic, standardised ap-
proaches for managing the availability of Internet-based services.
Instead, each developer of an availability-critical application had
to continuously re-invent the wheel again and again. To overcome
this problem, the IETF RSerPool Working Group had been
founded to develop Reliable Server Pooling (RSerPool, [1], [2]),
an application-independent framework for managing server pools
and sessions.

Clearly, in order to evaluate RSerPool, an OMNET++-based
simulation model – called RSPSIM – had been developed. It has
already been used for a couple of research publications, e.g. [2]–
[7]. In this code contribution, this model is released to the public.
Particularly, it may be useful in the context of cloud computing
– which has to solve very similar problems of server pool and
session management.

II. THE RSERPOOL ARCHITECTURE

An overview of the RSerPool architecture [1], [8] with its three
types of components is depicted in Figure 1: a server in a pool is
called Pool Element (PE), a client is denoted as a Pool User (PU).
The Handlespace – which is the set of all pools – is managed
by redundant Pool Registrars (PR). Within the handlespace, each
pool is identified by a unique Pool Handle (PH).

A. Registrar Operations

PRs of an Operation Scope synchronise their view of the
handlespace by using the Endpoint haNdlespace Redundancy
Protocol (ENRP) [9]. An operation scope is restricted to a single
administrative domain. That is, all of its components are under
the control of the same authority (e.g. a company). This property
leads to small management overhead [10], which also allows
for RSerPool usage on devices with limited memory and CPU
resources (e.g. telecommunications equipment). Nevertheless,
PEs may be distributed globally to continue their service even
in case of localised disasters [11] (e.g. an earthquake).

1Parts of this work have been funded by the German Research Founda-
tion (Deutsche Forschungsgemeinschaft – DFG).

2The authors would like to thank Xing Zhou for her friendly support.

Figure 1. The RSerPool Architecture

B. Pool Element Operations

PEs choose an arbitrary PR of the operation scope to reg-
ister into a pool by using the Aggregate Server Access Pro-
tocol (ASAP) [12]. Within its pool, a PE is characterised by
its PE ID, which is a randomly chosen 32-bit number. Upon
registration at a PR, the chosen PR becomes the Home-PR (PR-
H) of the newly registered PE. A PR-H is responsible for
monitoring its PEs’ availability by keep-alive messages (to be
acknowledged by the PE within a given timeout) and propagates
the information about its PEs to the other PRs of the operation
scope via ENRP updates. PEs re-register regularly (in an interval
denoted as Registration Lifetime) and for information updates.

C. Pool User Operations

In order to access the service of a pool given by its PH, a PU
requests a PE selection from an arbitrary PR of the operation
scope, again by using ASAP. The PR selects the requested list of
PE identities by applying a pool-specific selection rule, denoted
as Pool Policy. Two classes of load distribution policies are
supported: non-adaptive and adaptive strategies [7], [10], [11],
[13], [14]. While adaptive strategies base their selections on the
current PE state (which requires up-to-date information), non-
adaptive algorithms do not need such data.

III. THE RSPSIM MODEL

A. The Modules

The core module of the RSPSIM simulation model is the
TransportNode module. It contains a lightweight reliable mes-
sage forwarding service. A future version could simply replace

mailto:dreibh@iem.uni-due.de
mailto:martin.becke@uni-due.de
mailto:hakim.adhari@iem.uni-due.de
mailto:rathgeb@iem.uni-due.de


Figure 2. The CalcApp Pool User Operation

this service by using e.g. SCTP/IP of the INET FRAMEWORK.
Based on TransportNode, modules for PRs, PEs and PUs have
been realised as compound modules. Each of them contains a
sub-module of TransportNode, a sub-module for the RSerPool
protocol(s) and a sub-module for the application service.

B. The CalcApp Service

The currently only application service has been denoted as
CalcApp (“calculation application”). Each PE has a request
handling Capacity, given in the abstract unit of calculations per
second. Each request consumes a certain number of calculations,
denoted as Request Size. A PE can handle multiple requests
simultaneously, in a processor sharing mode as provided by
multitasking operating systems. Each PU generates a new request
in an interval denoted as Request Interval. Requests are queued
and sequentially assigned, as illustrated in Figure 2. The total
delay for handling a request dHandling is defined as the sum
of queuing delay dQueuing, startup delay dStartup (dequeuing
until reception of acceptance acknowledgement) and processing
time dProcessing (acceptance until finish):

dHandling = dQueuing + dStartup + dProcessing.

That is, dHandling not only incorporates the time required for
processing the request, but also the latencies of queuing, server
selection and message transport. The user-side performance
metric is the Handling Speed, which is defined as:

HandlingSpeed =
RequestSize

dHandling
.

The number of PUs can be given by the ratio between PUs and
PEs (PU:PE Ratio puToPERatio), which defines the request
handling parallelism. The average System Utilisation U (for
NumPEs servers and total pool capacity PoolCapacity) can be
calculated as:

U = NumPEs ∗ puToPERatio ∗
RequestSize

RequestInterval

PoolCapacity
.

Obviously, the primary provider-side performance metric is the
system utilisation, since only utilised servers gain revenue. In
practise, a well-designed client/server system is dimensioned for
a certain Target System Utilisation of e.g. 50%.

C. Simulations with SIMPROCTC

For easier simulation parametrisation, run distribution and
results analysis, the model sources also provide scripts to utilise
the Simulation Processing Tool-Chain SIMPROCTC [15] for this
task. A particularly interesting fact is that SIMPROCTC uses
the real RSerPool implementation RSPLIB [8] to distribute the
simulation runs in a compute pool.

IV. THE SOURCE PACKAGE

The RSPSIM package rspsim-<version>.tar.gz,
which is available from the project website [16], consists of:

• The full sources of the RSPSIM model based on OM-
NET++ 4.2 (in the directory model),

• A simple example (test1.ini) and
• A SIMPROCTC-based example (in the directory
toolchain).

The included file README describes how to compile the model
and run the examples. Some more details on the implementation
can be found in [8].

V. CONCLUSIONS

The Reliable Server Pooling (RSerPool) framework is the
new IETF standard for server pool and session management.
Particularly, the tasks provided by RSerPool are also useful in
the context of cloud computing research. The RSPSIM simulation
model provides a simulation environment for RSerPool systems.
It is released to the OMNET++ community by this code contri-
bution.

REFERENCES

[1] P. Lei, L. Ong, M. Tüxen, and T. Dreibholz, “An Overview of Reliable
Server Pooling Protocols,” IETF, Informational RFC 5351, Sept. 2008,
ISSN 2070-1721.

[2] T. Dreibholz and E. P. Rathgeb, “Overview and Evaluation of the Server
Redundancy and Session Failover Mechanisms in the Reliable Server
Pooling Framework,” International Journal on Advances in Internet Tech-
nology (IJAIT), vol. 2, no. 1, pp. 1–14, June 2009, ISSN 1942-2652.

[3] T. Dreibholz, X. Zhou, M. Becke, J. Pulinthanath, E. P. Rathgeb, and
W. Du, “On the Security of Reliable Server Pooling Systems,” International
Journal on Intelligent Information and Database Systems (IJIIDS), vol. 4,
no. 6, pp. 552–578, Dec. 2010, ISSN 1751-5858.

[4] X. Zhou, T. Dreibholz, F. Fa, W. Du, and E. P. Rathgeb, “Evaluation and
Optimization of the Registrar Redundancy Handling in Reliable Server
Pooling Systems,” in Proceedings of the IEEE 23rd International Con-
ference on Advanced Information Networking and Applications (AINA),
Bradford/United Kingdom, May 2009, pp. 256–262, ISBN 978-0-7695-
3638-5.

[5] T. Dreibholz, E. P. Rathgeb, and X. Zhou, “On Robustness and Counter-
measures of Reliable Server Pooling Systems against Denial of Service
Attacks,” in Proceedings of the 7th International IFIP Networking Con-
ference, ser. Lecture Notes in Computer Science, vol. 4982. Singapore:
Springer, May 2008, pp. 586–598, ISBN 978-3-540-79548-3.

[6] P. Schöttle, T. Dreibholz, and E. P. Rathgeb, “On the Application of
Anomaly Detection in Reliable Server Pooling Systems for Improved
Robustness against Denial of Service Attacks,” in Proceedings of the
33rd IEEE Conference on Local Computer Networks (LCN), Montréal,
Québec/Canada, Oct. 2008, pp. 207–214, ISBN 978-1-4244-2413-9.

[7] T. Dreibholz and E. P. Rathgeb, “On the Performance of Reliable Server
Pooling Systems,” in Proceedings of the IEEE Conference on Local
Computer Networks (LCN) 30th Anniversary, Sydney/Australia, Nov. 2005,
pp. 200–208, ISBN 0-7695-2421-4.

[8] T. Dreibholz, “Reliable Server Pooling – Evaluation, Optimization and
Extension of a Novel IETF Architecture,” Ph.D. dissertation, University
of Duisburg-Essen, Faculty of Economics, Institute for Computer Science
and Business Information Systems, Mar. 2007.

[9] Q. Xie, R. R. Stewart, M. Stillman, M. Tüxen, and A. J. Silverton,
“Endpoint Handlespace Redundancy Protocol (ENRP),” IETF, RFC 5353,
Sept. 2008, ISSN 2070-1721.

[10] T. Dreibholz and E. P. Rathgeb, “An Evaluation of the Pool Maintenance
Overhead in Reliable Server Pooling Systems,” SERSC International Jour-
nal on Hybrid Information Technology (IJHIT), vol. 1, no. 2, pp. 17–32,
Apr. 2008, ISSN 1738-9968.

[11] ——, “On Improving the Performance of Reliable Server Pooling Systems
for Distance-Sensitive Distributed Applications,” in Proceedings of the
15. ITG/GI Fachtagung Kommunikation in Verteilten Systemen (KiVS), ser.
Informatik aktuell. Bern/Switzerland: Springer, Feb. 2007, pp. 39–50,
ISBN 978-3-540-69962-0.

[12] R. R. Stewart, Q. Xie, M. Stillman, and M. Tüxen, “Aggregate Server
Access Protcol (ASAP),” IETF, RFC 5352, Sept. 2008, ISSN 2070-1721.

[13] T. Dreibholz and M. Tüxen, “Reliable Server Pooling Policies,” IETF, RFC
5356, Sept. 2008, ISSN 2070-1721.

[14] T. Dreibholz and E. P. Rathgeb, “The Performance of Reliable Server
Pooling Systems in Different Server Capacity Scenarios,” in Proceedings of
the IEEE TENCON, Melbourne/Australia, Nov. 2005, ISBN 0-7803-9312-
0.

[15] T. Dreibholz, X. Zhou, and E. P. Rathgeb, “SimProcTC – The Design
and Realization of a Powerful Tool-Chain for OMNeT++ Simulations,” in
Proceedings of the 2nd ACM/ICST International Workshop on OMNeT++,
Rome/Italy, Mar. 2009, pp. 1–8, ISBN 978-963-9799-45-5.

[16] T. Dreibholz, “Thomas Dreibholz’s RSerPool Page,” 2012. [Online].
Available: http://tdrwww.iem.uni-due.de/dreibholz/rserpool/

http://tdrwww.iem.uni-due.de/dreibholz/rserpool/

	Introduction
	The RSerPool Architecture
	Registrar Operations
	Pool Element Operations
	Pool User Operations

	The RspSim Model
	The Modules
	The CalcApp Service
	Simulations with SimProcTC

	The Source Package
	Conclusions
	References

