
On the Use of Concurrent
Multipath Transfer over Asymmetric Paths

Thomas Dreibholz, Martin Becke, Erwin P. Rathgeb
University of Duisburg-Essen

Institute for Experimental Mathematics
Ellernstraße 29, 45326 Essen, Germany

{dreibh,martin.becke,rathgeb}@iem.uni-due.de

Michael Tüxen
Münster University of Applied Sciences

Dept. of Electr. Engineering and Computer Science
Bismarckstraße 11, 48565 Steinfurt, Germany

tuexen@fh-muenster.de

Abstract—With the deployment of more and more resilience-
critical Internet applications, there is a rising demand for multi-
homed network sites. This leads to the desire for simultaneously
utilising all available access paths to improve application data
throughput. This is commonly known as Concurrent Multipath
Transfer (CMT); approaches for several Transport Layer proto-
cols have been proposed. Combined with Resource Pooling (RP),
CMT can also fairly coexist with concurrent non-CMT flows.
Current approaches focus on symmetric paths (i.e. similar
bandwidth, delay and error rate). However, asymmetric paths
are much more likely – particularly for realistic Internet setups
– and efficient CMT usage on such paths is therefore crucial.

In this paper, we first show the challenges of plain as well
as RP-aware CMT data transport over asymmetric paths. After
that, we introduce mechanisms for efficient transport over such
paths. Finally, we analyse the performance of our approaches by
using simulations.12

Keywords: Concurrent Multipath Transfer, Resource Pooling,
Asymmetric Paths, Buffer Handling, Performance Analysis

I. INTRODUCTION

During the first experimental network communications tests
by just connecting two nodes by a cable, nobody could
have predicted how this technology was going to change the
handling of devices and – in result – the world. Nowadays,
IP-based network communication has emerged to the central
pillar of the information society. Even mobile phones provide
ubiquitous Internet access over different interfaces – via dif-
ferent networks and paths – by using different ISPs.

Switching between different network interfaces is a common
approach to provide mobility or increased availability. How-
ever, utilising all interfaces simultaneously – in order to in-
crease throughput by load sharing [1] – is still not widespread
in the Internet. There is a growing consensus on the benefits of
this so-called Concurrent Multipath Transfer (CMT) [2] and a
considerable interest in combining multipath routing with rate
control [3], [4] on the Transport Layer. Technical advances,
like a TCP-friendly congestion control for multipath transport
in a Resource Pooling (RP) [5], [6] manner set the stage for
efforts in communities – like the Multipath TCP Working
Group of the IETF – to extend existing transport protocols
like TCP and SCTP [7] with CMT.

Current research on plain or RP-aware CMT performance
proves the throughput benefits for using symmetric paths [1],
[2], [6]. However, the challenge is an efficient transport over
asymmetric paths – i.e. paths with different bandwidths, delays
and error rates – which are highly realistic for multi-homed

1Parts of this work have been funded by the German Research Foundation
(Deutsche Forschungsgemeinschaft – DFG).

2The authors would like to thank Irene Rüngeler for her friendly support
regarding INET and Randall Stewart for initial discussions about Receiver
Buffer Splitting.

Figure 1. Retransmission Queue and Selective Acknowledgements

Internet sites. In this paper, we first demonstrate the limitations
of state-of-the-art CMT on asymmetric paths. We furthermore
introduce mechanisms for efficient CMT transport in such
scenarios and show their performance by using simulations.

II. RELIABLE USER DATA TRANSPORT IN MULTI-HOMED
ENVIRONMENTS

In this paper, we exemplarily use the SCTP protocol [7],
since it is widely known and its basic multi-homing features
are well-researched. However, the mechanisms and approaches
presented in this paper are common to all CMT protocols. An
adaptation to other protocols – particularly Multipath TCP –
is a straightforward task.

SCTP is a general-purpose, connection-oriented, unicast
transport protocol which provides the reliable transport of
user messages within multiple independent streams and multi-
homing out of the box. An SCTP connection is denoted as
association. Unlike TCP, each SCTP endpoint can use multiple
IPv4 and/or IPv6 addresses to transmit to its peer. Each peer
address defines a unidirectional path.

User messages are segmented into units of so-called DATA
chunks, which are identified by unique Transmission Sequence
Numbers (TSN). For each DATA chunk, the application de-
cides whether the chunk must be delivered to the peer’s
Application Layer within its stream in sequence (ordered
delivery – similar to TCP) or may be delivered out of sequence
(unordered delivery). Multiple smaller DATA chunks may be
bundled into a single packet to reduce overhead by sending
full packets. In this paper, we only use a single stream.

A Selective Acknowledgement (SACK) chunk [7, subsub-
section 3.3.4] is transmitted by the receiver to acknowledge
received DATA chunks and report gaps (i.e. missing DATA
chunks given by their TSNs) to the sender. It also contains
the receiver’s advertised window size (rwnd; given in bytes).
By default, a SACK is generated for every second packet (not
chunk); it is sent back over the peer path of the last received
packet. An example SACK chunk is shown in Figure 1. It con-
sists of a cumulative acknowledgement (CumAck), which ac-



knowledges all TSNs including the given TSN (here: TSN #2).
Optional gap reports indicate further already-received TSNs
(GapAck; here: TSN #5 to TSN #7). But some more TSNs
(here: TSN #3) are needed to perform a CumAck.

While CumAcks are obviously non-renegable, the receiver
may revoke GapAcks (here: TSN #8). This may e.g. hap-
pen when the receiver queue gets too full to store earlier
chunks (which are necessary for the next CumAck). Although
reneging usually occurs rarely, the sender must always be
prepared to reneg GapAck’ed TSNs. That is, GapAck’ed
chunks must remain buffered in the sender buffer, although
these chunks are not being outstanding (i.e. in flight) any more.
To improve efficiency, the Non-Renegable SACK extension
(NR-SACK [8]) allows signalising non-renegable GapAcks.

Two mechanisms perform retransmission of missing chunks:
(1) Once a DATA chunk has been gap-reported as missing for
3 times, it is retransmitted immediately on the same path (Fast
Retransmission [7, subsection 7.2.4]). (2) Further retransmis-
sions (possibly on alternative paths) are triggered by a timer
(Timer-Based Retransmission [7, subsubsection 6.3.3]). The
timeout triggering a Timer-Based Retransmission is denoted
as Retransmission Timeout (RTO) of a path. It is set for
the earliest outstanding chunk. The RTO of a path is calcu-
lated [7, subsection 6.3] by the Round-Trip Time (RTT) of
that path, with lower and upper thresholds RTO.Min=1s and
RTO.Max=60s (default settings from [7, section 15]).

On each path, SCTP applies AIMD (Additive Increase, Mul-
tiplicative Decrease) congestion window control [6, section 3]
– similar to TCP. Standard SCTP [7] uses only one path in
each direction to transmit DATA chunks. This selected path
is denoted as primary path. Alternative paths are only used
for retransmissions; the primary path may be changed e.g. in
case of path errors. This ensures fairness against concurrent
TCP/SCTP flows which share a single bottleneck link with a
multi-homed SCTP association [6].

CMT-SCTP [2] denotes the realization of CMT for SCTP.
To ensure fairness against concurrent single-homed flows (e.g.
TCP flows), CMT-SCTP requires all paths to be disjoint. While
this is possible for well-designed intranets, this property cannot
be ensured for arbitrary Internet connections. By combining
CMT-SCTP with RP [5] to CMT/RP-SCTP [6], a fair CMT
deployment in such cases is also possible – at the cost of a
slower congestion window growth rate [6, section 4].

SCTP uses a checksum to protect packets against bit errors;
damaged packets are dropped. Since this leads to a congestion
window reduction, the “Packet Drop Reporting” extension [9]
allows a receiver to inform its sender about damaged packets.
Then, the sender can retransmit them – without changing the
congestion window. Therefore, the throughput is not reduced
by misinterpreting damaged packets as congestion indications.
However, this extension can only be applied if packets being
damaged are still delivered to the remote SCTP stack.

III. CHALLENGES OF ASYMMETRIC PATHS

A. Sender Buffer Blocking
Figure 2 illustrates a problem which we denote as Sender

Buffer Blocking: on path #1, the TSN #27 is successfully
received – as well as the TSNs #29 to #34 on path #2. This
allows a CumAck of TSN #27 and GapAcks for TSNs #29
to #34. The delayed TSN #28 is missing. Due to possible
reneging, the chunks #29 to #34 cannot be removed from
the sender buffer. Only the space of a single chunk is freed
(by CumAck of TSN #27), allowing only a single more new
chunk to be transmitted into the network. In the worst case,

Figure 2. Sender Buffer Blocking

TSN #28 is a Fast Retransmission being lost. Then, once
the buffer is fully blocked, the transmissions on all paths are
suspended until a successful Timer-Based Retransmission of
this chunk. NR-SACKs [8] are able to reduce the problem for
certain cases, but cannot solve it entirely – as we will show
in subsection VI-B.

B. Receiver Buffer Blocking
On the receiver side, a blocking problem – which we denote

as Receiver Buffer Blocking – can occur. Similar to Sender
Buffer Blocking, missing chunks preventing other already-
received ones to be deliverable to the application result in
blocking buffer space. Obviously, chunks being received in the
expected sequence can leave the buffer (by providing them to
the application). However, further chunks may only leave the
buffer for unordered transmission. Due to in-sequence delivery,
ordered chunks have to wait until all previous gaps in the
sequence have been filled. In [10] it is shown that specific
retransmission strategies can be used to alleviate some of the
throughput reduction related to Receiver Buffer Blocking.

C. Spurious Fast Retransmission Bursts
The occasional appearance of Timer-Based Retransmissions

causes a problem when paths have different delays. According
to [7, subsubsection 6.3.3], any outstanding chunk on the
affected path “should be marked for retransmission”, which is
– in case of multi-homing – on another path. This behaviour is
useful, since it shifts away traffic from a possibly broken path
to a working one. But if such an outstanding chunk with TSN c
is just delayed, TSN c will exist in the network twice. If the
original transmission of c is acknowledged – which appears
to the sender as an acknowledgement of c on the new path
– and if c somewhat differs from the TSN range on the new
path (i.e. it is lower or higher, due to the delay difference
between the paths), the CMT Fast Retransmission handling [2,
subsection III-A] may assume large gaps in the TSN sequence
on the new path. These putative gaps trigger bursts of Fast
Retransmissions. While the resulting duplicate chunks are



simply dropped by the receiver, the Fast Retransmissions lead
to congestion window reduction.

IV. EFFICIENT TRANSPORT OVER ASYMMETRIC PATHS

A. Buffer Size Considerations
The buffer sizes of sender and receiver are important sys-

tem parameters. The AIMD congestion control behaviour [6]
leads to frequent losses of single packets (which is intended
behaviour!). These losses are handled by Fast Retransmissions,
which should therefore be covered by the buffer to avoid sig-
nificant interruptions. That is, the minimum buffer size Bmin

– for the sender as well as for the receiver buffer – in a setup
with paths P = {P1, . . . , Pn}, BWi the bandwidth and RTTi

the RTT of path Pi is:

Bmin = 2 ∗ max
1≤i≤n

(RTTi) ∗
n∑

i=1

BWi.

Timer-Based Retransmissions occur in case of high con-
gestion (i.e. they should be rare). To cover a Timer-Based
Retransmission, the minimum buffer size Bmin for the sender
and receiver buffers is:

Bmin = (3 ∗ max
1≤i≤n

(RTTi) + max
1≤i≤n

(RTOi)) ∗
n∑

i=1

BWi.

That is, in the worst case it takes 3 times the RTT (first trans-
mission, Fast Retransmission, Timer-Based Retransmission)
plus the highest path RTO. Since the default minimum RTO is
RTO.Min=1s [7, section 15], the Timer-Based Retransmission
coverage by the buffer space is usually too expensive (e.g.
about 32 MiB – per association – in a 100/100 Mbit/s setup
with RTO=1s and RTT=110ms).

B. Buffer Splitting
To avoid one path occupying too much buffer space –

which prevents other paths from sending out new chunks –
our approach denoted as Sender Buffer Splitting simply splits
the sender buffer of size BSender into n (i.e. number of paths)
sections. Let Bufferedi be the buffer size occupied by chunks
on path Pi and MTUi be the MTU on path Pi. Then, a new
chunk on path Pi may be sent if its buffer share allows another
MTU-sized packet:

Bufferedi + MTUi ≤
BSender

n
. (1)

Similar to the sender buffer handling, the sender is also
able to care for the receiver buffer (by taking notice of the
advertised window size Rwnd). Let Outstandingj be the
buffer size occupied by outstanding (i.e. still unacknowledged)
chunks on path Pj . Using Receiver Buffer Splitting, a new
chunk on path Pi may be sent if:

Bufferedi + MTUi ≤
Rwnd +

∑n
j=1 Outstandingj

n
. (2)

C. Chunk Rescheduling
Our approach denoted as Chunk Rescheduling copes with

the problem of some delayed or lost chunks stalling the whole
transmission (see subsection III-A). On each transmission
event on a path Pi, the so-called blocking fraction of path Pi

is calculated as:

BlockingFractioni =
Bufferedi − Outstandingi

BSender

Figure 3. The Simulation Setup

Chunk Reschedulung is triggered when Pi blocks more than
half of the path’s buffer share, i.e.:

BlockingFractioni >
1
2

(No Buffer Splitting)
BlockingFractioni >

1
2
∗ 1

n
(With Buffer Splitting)

Then, we look for the first chunk which blocks the removal
of chunks on path Pi from the sender buffer. This chunk is
rescheduled for retransmission on path Pi as soon as possible,
i.e. when the congestion window of Pi allows its transmission.
Since the initial transmission of this chunk may still be in
flight on the previous path Pp, the congestion window of Pp

is reduced by the chunk size. Furthermore, since it is unknown
to the sender whether the chunk has been finally acknowledged
on Pi or Pp (i.e. first transmission delayed but not lost),
acknowledgements for rescheduled chunks are not considered
for congestion window advances (see [2, subsection III-B] for
details on CMT congestion window handling). That is, Chunk
Rescheduling does not introduce any unfairness to concurrent
flows. In the context of [10], Chunk Rescheduling can be seen
as a preventive retransmission policy.

D. Smart Fast Retransmission
To cope with the “Spurious Fast Retransmission Bursts”

problem described in subsection III-C, our approach “Smart
Fast Retransmission” simply does not consider chunks being
moved from another path in the decision about Fast Retrans-
missions on the new path.

V. SIMULATION MODEL AND SETUP

For our performance evaluation, we have used the
OMNET++-based INET framework with the CMT-SCTP
model [11] including support for CMT/RP-SCTP [6]. The
SIMPROCTC [12] tool-chain has been used for parametri-
zation and results processing. The results plots in this paper
show the average values of 64 runs and their 95% confidence
intervals. Figure 3 illustrates the simulation setup: sender and
receiver have been connected via two paths. The following
configuration parameters have been used, unless otherwise
specified:

• The QoS parameters (bandwidth, delay, bit error rate)
of the links between the routers of each path have
been configurable (default: bandwidth of 100 Mbit/s and
delay of 1ms without errors). The bottleneck network
interfaces use RED queues (with settings based on [13]:
wq = 0.002, minth = 20, maxth = 80, maxp = 0.02).

• After association establishment and transmission start, the
actual throughput measurement has been started after 19s,
the measurement duration has been 60s.

• The senders have been saturated (i.e. they have tried to
transmit as much data as possible); the message size
has been 1,452 bytes at an MTU of 1,500 bytes (i.e.
MTU-sized packets [7, subsubsection 3.3.1]). Smart Fast
Retransmission has been turned on.



Figure 4. Buffer Splitting for Different Sender and Receiver Queue Sizes

VI. PERFORMANCE ANALYSIS

A. Avoiding the Buffer Blocking Problem
In order to illustrate the behaviour of Buffer Splitting

(see subsection IV-B), we have applied FIFO router queues
(since RED is non-deterministic) in the simulation setup, using
100 Mbit/s on path #1 but only 10 Mbit/s on path #2 for
unordered CMT-SCTP transmission with NR-SACK enabled.
The maximum router queue message capacity ϕ has been
varied. Figure 4 presents the application payload throughput
results for Buffer Splitting turned off (Π=none) as well as
Sender Buffer Splitting (Π=senderOnly; see formula 1), Re-
ceiver Buffer Splitting (Π=receiverOnly; see formula 2) and
both simultaneously (Π=bothSides).

If the sender buffer is larger than the receiver buffer
(250,000 bytes vs. 125,000 bytes; shown on the left-hand plot),
the throughput significantly sinks from about 106 Mbit/s to
only 20 Mbit/s with no or just Sender Buffer Splitting applied:
the growing number of outstanding messages on the slow
path fills the receiver queue, while it cannot provide sufficient
space for messages on the fast path. Receiver Buffer Splitting
solves the problem here. Having a sender buffer smaller than
the receiver buffer (125,000 bytes vs. 250,000 bytes; shown
on the right-hand plot), the scenario turns. Now, the sender
buffer gets blocked by the outstanding messages on the slow
path – and Sender Buffer Splitting solves the problem. For
equal buffer sizes (250,000 bytes for both; shown on the
middle plot), the problem is solved by Sender or Receiver
Buffer Splitting. That is, applying Sender and Receiver Buffer
Splitting simultaneously (i.e. Π=bothSides) solves the Buffer
Blocking in all cases. Therefore, we only apply this variant in
the following and commonly denote it as Buffer Splitting.

B. Unordered Transmission
Figure 5 shows the application payload throughput results

for unordered CMT-SCTP transmission when using a sender
buffer of 2.5∗105 bytes and a receiver buffer of 1.25∗105 bytes
(i.e. 2 orders of magnitude smaller than the bytes per second
transported in a 100/100 Mbit/s setup!). The left-hand plot
shows the results for varying the path #2 bandwidth ρ.
Obviously, the throughput of regular CMT using neither Buffer
Splitting (i.e. Π=none) nor NR-SACK (i.e. ν=false) falls to
almost zero for highly asymmetric links (e.g. ρ=1 Mbit/s). NR-
SACK alone (ν=true) just improves the situation somewhat,
while Buffer Splitting alone (i.e. Π=bothSides, ν=false) makes
the problem even worse. But combining both mechanisms,

the throughput scales linearly and achieves the expected val-
ues (e.g. 106 Mbit/s in a 100/10 Mbit/s setup and around
192 Mbit/s in the symmetric 100/100 Mbit/s case).

Varying the path #2 bit error rate ε (middle plot in Figure 5)
for the same buffer size settings as before, there is almost a
throughput of zero for ε = 5 ∗ 10−6. A significant perfor-
mance improvement is achieved by turning on NR-SACK (i.e.
ν=true). The performance is independent of Buffer Splitting
usage. By using Packet Drop Reporting (i.e. ∆=true), the
performance is increased further. In this case, the scenario
looks similar to a symmetric setup: dropped packets are just
retransmitted – without reducing the congestion window – and
only the overhead of these retransmissions slightly reduces the
throughput. That is, the best performance is achieved for using
NR-SACKs and Packet Drop Reports, if applicable; Buffer
Splitting does not change the performance in loss situations.

The AIMD congestion control behaviour of halving the
congestion window on a packet loss and increasing it again
by one MTU per RTT in congestion avoidance phase (i.e.
slow growth for large RTT) leads to a reduced throughput.
The existence of delay requires larger buffers in order to have
a sufficient number of chunks in flight. Varying the path #2
delay δ when using a sender buffer of 2.5 ∗ 106 bytes and a
receiver buffer of 1.25∗106 bytes (right-hand plot in Figure 5),
the best performance is achieved for using NR-SACK (i.e.
ν=true) in combination with Smart Fast Retransmission (i.e.
τ=true; see subsection IV-D) – regardless of the Buffer Split-
ting configuration. Turning the latter feature off (i.e. τ=false),
the occurrence of Spurious Fast Retransmission Bursts (see
subsection III-C) leads to a significantly reduced throughput
for a higher delay δ.

The application payload throughput results for unordered
CMT/RP-SCTP transport – using the same scenario setups
as the corresponding CMT-SCTP simulations above – are
presented in Figure 6. At first, the performance is quite
corresponding to the plain CMT results. However, an inter-
esting observation is the performance difference for almost
symmetric scenarios: while the CMT/RP-SCTP throughput
for a path #2 bandwidth of ρ=100 Mbit/s (see left-hand plot
in Figure 6) achieves only about 175 Mbit/s when Buffer
Splitting is turned off (i.e. Π=none), plain CMT-SCTP (see
the corresponding plot in Figure 5) reaches the expected
bandwidth of 192 Mbit/s in the same situation. The reason for
this deviation of the CMT/RP performance is the congestion
window handling of CMT/RP-SCTP (see [6, section IV] for
details), which may lead to a very slow growth rate in case of



Figure 5. Unordered Transmission for CMT-SCTP

Figure 6. Unordered Transmission for CMT/RP-SCTP

temporary path capacity ratio changes. The resulting effect
is similar to temporary bandwidth changes. The usage of
Buffer Splitting (i.e. Π=bothSides) solves this problem of
bandwidth differences, i.e. also CMT/RP-SCTP achieves the
expected throughput of 192 Mbit/s. The same effect can also
be observed for the path #2 bit error rate ε variation (middle
plots): the highest bandwidth is only reached when Buffer
Splitting is turned on (i.e. Π=bothSides).

In summary, effective unordered CMT as well as CMT/RP
transport over asymmetric paths requires NR-SACK and
Buffer Splitting. Smart Fast Retransmission improves the
performance and in case Packet Drop Reporting is applicable,
it should be used.

C. Ordered Transmission

The key difference between unordered and ordered transport
is the fact that an user message can only be provided to the
application when all previous messages have been forwarded
before. This section considers only the completely ordered
case, which is the hardest one and also applies to Mul-
tipath TCP. Simply NR-SACK’ing already received chunks
cannot work, since this only mitigates Sender Buffer Blocking,
but not Receiver Buffer Blocking. This leads to the need for
larger buffers. For the following simulations, we have used
sender and receiver buffer sizes of 2.5 ∗ 106 bytes (i.e. still
one order of magnitude smaller than the 25 ∗ 106 bytes per
second transferred in a 100/100 Mbit/s setup!).

Figure 7 presents the CMT-SCTP application payload
throughput using ordered transport for varying the path #2
bandwidth ρ (left-hand side), bit error rate ε (middle plot)
and delay δ (right-hand plot); the corresponding results for
CMT/RP-SCTP are shown in Figure 8. The most important
observation is that Chunk Rescheduling (see subsection IV-C)
for ordered transmission takes over the role of NR-SACK for
unordered transmission (compare the corresponding results of
unordered transport in figures 5 and 6): Chunk Rescheduling
(Ψ=threshold) ensures that missing or highly late chunks
are quickly resent, facilitating a fast CumAck and avoiding
Buffer Blocking. Combining Chunk Rescheduling with Buffer
Splitting (i.e. Π=true) avoids performance decay in highly
asymmetric bandwidth scenarios (e.g. ρ ≤1 Mbit/s – see the
left-hand plot); Packet Drop Reporting (i.e. ∆=true) ensures
a high throughput in loss situations (middle plot) and using
Smart Fast Retransmission (i.e. τ=true) improves the perfor-
mance for different path delays (right-hand plot).

As expected, the four mechanisms also improve the perfor-
mance of ordered transport using CMT/RP-SCTP (compare
the corresponding results in Figure 8). In summary, effective
ordered CMT as well as CMT/RP transport over asymmet-
ric paths requires Chunk Rescheduling, Buffer Splitting and
Smart Fast Retransmission. In case Packet Drop Reporting is
applicable, it should be used. Our CMT extensions have been
contributed as Internet Draft [14] into the IETF standardization
process of SCTP.



Figure 7. Ordered Transmission for CMT-SCTP

Figure 8. Ordered Transmission for CMT/RP-SCTP

VII. CONCLUSIONS

In this paper, we have examined the challenges of CMT in
asymmetric setups, which are very realistic for multi-homed
Internet sites. We have identified the problems of sender and
receiver queue blocking, leading to poor performance of CMT.
By applying our proposed mechanisms Buffer Splitting, Chunk
Rescheduling and Smart Fast Retransmission, a significant
performance improvement can be achieved – for plain CMT
as well as for CMT combined with RP.

We are currently realizing our approaches in the FreeBSD
networking stack, in order to perform experiments in lab setups
as well as in a real Internet testbed. Furthermore, we are
also going to contribute our results into the ongoing IETF
standardization process of SCTP [14] and Multipath TCP.

REFERENCES

[1] Y. Dong, D. Wang, N. Pissinou, and J. Wang, “Multi-Path Load
Balancing in Transport Layer,” in Proceedings of the 3rd IEEE EuroNGI
Conference on Next Generation Internet Networks, Trondheim/Norway,
May 2007, pp. 135–142, ISBN 1-4244-0857-1.

[2] J. R. Iyengar, P. D. Amer, and R. Stewart, “Concurrent Multipath Trans-
fer Using SCTP Multihoming Over Independent End-to-End Paths,”
IEEE/ACM Transactions on Networking, vol. 14, no. 5, pp. 951–964,
Oct. 2006, ISSN 1063-6692.

[3] F. Kelly and T. Voice, “Stability of End-to-End Algorithms for Joint
Routing and Rate Control,” ACM SIGCOMM Computer Communication
Review, vol. 35, no. 2, pp. 5–12, Apr. 2005, ISSN 0146-4833.

[4] P. Key, L. Massoulié, and D. Towsley, “Path Selection and Multipath
Congestion Control,” in Proceedings of the 26th IEEE INFOCOM,
Anchorage, Alaska/U.S.A., May 2007, pp. 143–151, ISBN 1-4244-1047-
9.

[5] D. Wischik, M. Handley, and M. B. Braun, “The Resource Pooling
Principle,” ACM SIGCOMM Computer Communication Review, vol. 38,
no. 5, pp. 47–52, Oct. 2008, ISSN 0146-4833.

[6] T. Dreibholz, M. Becke, J. Pulinthanath, and E. P. Rathgeb, “Applying
TCP-Friendly Congestion Control to Concurrent Multipath Transfer,” in
Proceedings of the 24th IEEE International Conference on Advanced
Information Networking and Applications (AINA), Perth/Australia, Apr.
2010, pp. 312–319, ISSN 1550-445X.

[7] R. Stewart, “Stream Control Transmission Protocol,” IETF, Standards
Track RFC 4960, Sep. 2007.

[8] P. Natarajan, N. Ekiz, E. Yilmaz, P. D. Amer, and J. Iyengar, “Non-
Renegable Selective Acknowledgments (NR-SACKs) for SCTP,” in
Proceedings of the 16th IEEE International Conference on Network
Protocols (ICNP), Orlando, Florida/U.S.A., Oct. 2008, pp. 187–196,
ISBN 1-4244-2507-5.

[9] R. Stewart, P. Lei, and M. Tüxen, “Stream Control Transmission
Protocol (SCTP) Packet Drop Reporting,” IETF, Individual Submission,
Internet-Draft Version 10, Jun. 2010, draft-stewart-sctp-pktdrprep-10.txt,
work in progress.

[10] J. Iyengar, P. Amer, and R. Stewart, “Receive Buffer Blocking in Concur-
rent Multipath Transfer,” in Proceedings of the IEEE GLOBECOM, St.
Louis, Missouri/U.S.A., Nov. 2005, pp. 121–126, ISBN 0-7803-9414-1.

[11] T. Dreibholz, M. Becke, J. Pulinthanath, and E. P. Rathgeb, “Implemen-
tation and Evaluation of Concurrent Multipath Transfer for SCTP in the
INET Framework,” in Proceedings of the 3rd ACM/ICST OMNeT++
Workshop, Málaga/Spain, Mar. 2010, ISBN 978-963-9799-87-5.

[12] T. Dreibholz, X. Zhou, and E. P. Rathgeb, “SimProcTC – The Design
and Realization of a Powerful Tool-Chain for OMNeT++ Simulations,”
in Proceedings of the 2nd ACM/ICST OMNeT++ Workshop, Rome/Italy,
Mar. 2009, pp. 1–8, ISBN 978-963-9799-45-5.

[13] S. Floyd and V. Jacobsen, “Random Early Detection Gateways for
Congestion Avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397–413, 1993, ISSN 1063-6692.

[14] T. Dreibholz, M. Becke, J. Iyengar, P. Natarajan, and M. Tüxen, “Load
Sharing for the Stream Control Transmission Protocol (SCTP),” IETF,
Network Working Group, Internet-Draft Version 00, Jul. 2010, draft-
tuexen-tsvwg-sctp-multipath-00, work in progress.


