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ABSTRACT
The steadily growing importance of resilience-critical Inter-
net applications leads to a rising number of multi-homed
sites and systems. But since the protocols of the classical
Internet – particularly TCP – assume a single access path
only, the number of programs supporting multiple network
paths is still small. The Stream Control Transport Proto-
col (SCTP), which is an advanced general-purpose transport
protocol and the possible successor of TCP, brings the sup-
port of multi-homing into the applications.

For technical reasons, SCTP uses one network path for
data transmission and utilizes the other paths for backup
only. An extension to support the load balancing of user
data onto multiple paths in order to increase the payload
throughput is Concurrent Multipath Transfer for SCTP, de-
noted as CMT-SCTP. In this paper, we describe our CMT-
SCTP extension for the SCTP model provided by the INET
framework. By using proof-of-concept simulations, we fur-
thermore demonstrate its usability and configuration param-
eters.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: SCTP, Concurrent Multipath
Transfer; D.4.8 [Operating Systems]: Performance—Sim-
ulation; I.6.4 [Simulation and Modeling]: Model Valida-
tion and Analysis

General Terms
Algorithms, Design, Experimentation

Keywords
INET Framework, SCTP, Concurrent Multipath Transfer,
Model, Evaluation

∗Parts of this work have been funded by the German Re-
search Foundation (Deutsche Forschungsgemeinschaft).
†The authors would like to thank Irene Rüngeler, Michael
Tüxen and Brad Penoff for their friendly support.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OMNeT++ 2010 March 15–19, 2010, Torremolinos, Málaga, Spain.
Copyright 2010 ICST, ISBN 78-963-9799-87-5.

1. INTRODUCTION
When the Internet was designed a long time ago, its end-

points have been equipped with a single network interface
only. This worked well for the application of that time –
despite of the limited resilience on network failures. Nowa-
days, however, there is a steadily growing demand for a
higher robustness – which leads to more and more devices
being offered with several network interfaces. This allows
for so-called multi-homing, which denotes the simultaneous
connection to several – possibly independent – networks.
But the dominant protocols – particularly TCP – support
a single path access only. However, new protocols like the
Stream Control Transport Protocol (SCTP) [1] comply with
the requirements of multi-homing.

Instead of using a single network path for user data trans-
port and keeping the others for backup only, it is desir-
able to utilize all paths to improve the payload transmis-
sion throughput. This approach is denoted as Concurrent
Multipath Transfer (CMT). CMT for SCTP, which we de-
note as CMT-SCTP, has been proposed by [2] and it is al-
ready implemented in the FreeBSD kernel. However, in or-
der to examine open topics on the usage of CMT-SCTP for
MPI (Message Passing Interface) [3] or issues on its fairness
against TCP have made a simulation model necessary. In
this paper, we therefore describe our CMT-SCTP extension
for the SCTP simulation model [4] of the INET framework
in OMNeT++.

This paper is structured as follows: First, we shortly in-
troduce the SCTP protocol in section 2. Next, we present
CMT-SCTP in section 3. In section 4, we introduce our
implementation of CMT-SCTP into the INET framework.
Using our simulation setup described in section 5, we finally
demonstrate the results from our proof-of-concept simula-
tion in section 6. A conclusion is provided by section 7.

2. THE SCTP PROTOCOL
SCTP, which is defined in [1], is a connection-oriented,

message-oriented1, reliable, unicast transport protocol. An
SCTP connection is denoted as association. As part of a
single association, both communication endpoints can bind
multiple addresses. This feature is denoted as multi-homing
and illustrated in figure 1. The binding allows for the trans-
mission of message-oriented data over different network in-
terfaces as a way to enhance end-to-end robustness. The
multi-homing feature in SCTP supports both, IPv4 and
IPv6 addresses.

2.1 Data Transmission and Acknowledgement
1SCTP preserves the message framing – in contrast to TCP,
which is stream-oriented and just handles bytes.
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Figure 1: SCTP Multi-Homing and Primary Paths

SCTP messages contain so-called chunks. A set of con-
trol chunks is defined for the association maintenance; so-
called DATA chunks contain segmented user data messages.
Every DATA chunk includes a so-called Transmission Se-
quence Number (TSN). The TSN is used by the receiv-
ing endpoint to detect lost, reordered or duplicated DATA
chunks [1]. Furthermore, SCTP shares some functionalities
with TCP: the congestion control and the selective acknowl-
edgement (SACK) scheme. A SACK chunk is used to ac-
knowledge chunks (identified by their TSNs) to the sender.
It contains the following information:

Cumulative Acknowledgement (CumAck) is a cumu-
lative acknowledgement for all TSNs up to the given
number.

Gap Acknowledgements (GapAcks) lists ranges of the
TSNs which have been received after the CumAck.
That is, there are gaps in the TSN sequence (e.g. due
to packet loss or reordering).

Missing chunks – identified by their TSNs – are handled in
two different ways:

• Once a DATA chunk is gap-reported as missing for
3 times (default setting [1]), it is retransmitted imme-
diately on the same path (Fast Retransmission [1, sub-
section 7.2.4]).

• Further retransmissions (possibly on alternative paths)
are triggered by a timer (Timer-Based Retransmis-
sion).

For the transmission of SACKs, the mechanism of so-called
Delayed Acknowledgement – as defined in [5] – is used. By
default, a SACK chunk is sent for every second packet (not
chunk!) received within 200ms of the arrival of any unac-
knowledged DATA chunk (see also [1, subsection 6.2]). This
mechanism reduces the acknowledgement overhead. But
when receiving a DATA chunk with an out-of-order TSN,
a SACK chunk is sent immediately.

2.2 Congestion Control
To handle congestion, SCTP uses a separate congestion

window for each path. The adaption of a congestion window
is basically the same as in TCP, i.e. it leads to a fair parti-
tioning of the bandwidth on congested links. But a possible
parallel transmission of SCTP DATA chunks on multiple
paths (i.e. load balancing) can excite an unfairness to exist-
ing TCP connections if multiple paths share the same con-
gested bottleneck link. For example, if two SCTP paths of
one association share the bottleneck with one TCP connec-
tion, the SCTP association would get 2

3
of the bandwidth,

Figure 2: SCTP Multi-Streaming

whereas the TCP connection has to be content with the re-
maining 1

3
of the bandwidth. For this reason, the current

SCTP standard – as defined in [1] – uses only one path in
each direction to transmit DATA chunks at the same time.
This selected path is denoted as primary path (see also fig-
ure 1). The alternative paths are only used for retransmis-
sions. SCTP may change the primary path e.g. in case of
path errors. The usage of the single primary path solves the
fairness issue. Using so-called Resource Pooling (RP) [6],
the fairness issue can also be handled when using multiple
paths for data transmission. [7] introduces CMT/RP-SCTP,
a CMT-SCTP variant being extended by RP.

2.3 Additional Features
SCTP provides in-sequence delivery of user data mes-

sages within several independent streams – denoted as multi-
streaming (see figure 2 for an illustration). All user data
messages of the different streams are multiplexed over the
same SCTP association. The number of streams in each
direction is negotiated during association setup. An SCTP
user application specifies the corresponding stream for each
message. By default, SCTP makes sure that all user mes-
sages belonging to the same stream are delivered in the same
sequence as they were sent (ordered delivery). Ordered de-
livery can be turned off on a per-message basis when not
necessary. The sequence of the messages among the differ-
ent streams might change. This reduces the “head-of-line
blocking” problem in case of message loss and retransmis-
sion. Multiple user messages can be bundled into an SCTP
packet to reduce the number of small messages.

In addition to standard SCTP [1], several protocol exten-
sions have been defined:

Partial Reliability (PR-SCTP) defined in [8] provides
an optional per-message unreliable transport. A sender
can signal its peer to move the CumAck point forward,
in order to skip TSNs. As service to the upper layer, an
SCTP implementation can provide configurable poli-
cies (e.g. time or number of retransmissions) to limit
the number of transmission trials for each message.
This feature is useful for real-time communications,
where too-late retransmissions become useless.

Dynamic Address Reconfiguration is defined in [9] and
allows for the dynamical reconfiguration of IP adresses
during the lifetime of an association. This feature can
be used to support mobility [10].

Packet Drop defined in [11] allows for nodes announcing
packet losses not determined by congestion. Thus, the



Figure 3: Unnecessary Fast Retransmissions

congestion window need not to be reduced on lossy
links (e.g. when using satellite communications).

In the long-term future, SCTP may replace TCP [12]. Es-
pecially, the advanced features of SCTP are beneficial for
applications like data transport in grid scenarios [3] and Re-
liable Server Pooling (RSerPool) [13,14].

3. CMT-SCTP
Modifying standard SCTP to just send DATA chunks over

multiple paths instead of a selected primary one would al-
ready realize CMT – but lead to a very poor throughput
performance. In order to perform CMT efficiently, several
additional optimizations are necessary [2]. These optimiza-
tions are described in the following subsections.

3.1 Split Fast Retransmission
When sending over multiple paths, DATA chunks may

overtake each other due to different path latencies. An
example is illustrated in figure 3: sending TSN #9 over
path #1 and TSN #10 to TSN #12 over path #2, the sink
may first see the TSN #10 to TSN #12 while TSN #9
is still on its travel through the network. Consequently,
the sink will notice 3 “out of order” TSNs and acknowledge
each one with a CumAck for TSN #8 (i.e. the last “in or-
der” TSN) and corresponding Gap Reports for the already-
received TSNs #10 to #12. Then, the sender sees three
CumAcks for the same TSN and therefore triggers a Fast
Retransmission – which requires a retransmission of TSN #9
and leads to a reduction of the congestion window. When
finally the original TSN #9 arrives at the sink, the follow-
ing retransmitted chunk can be ignored (i.e. it has wasted
network bandwidth) and the congestion window has to grow
again (i.e. time will be wasted).

The solution to this problem – denoted as Split Fast Re-
transmission (SFR) [2] – is reasonably simple: the SACK
handling has to take care of the individual paths. For each
transmitted chunk, the path on which it has been sent is
remembered. On reception of a SACK, the path P of a
chunk with TSN tMissing reported as missing is checked.
TSN tMissing is only assumed as missing when tMissing is
smaller than the TSN of the highest successfully acknowl-
edged chunk tPHighestAckedOnPath on path P . Since both, the

chunks with TSNs tMissing and tPHighestAckedOnPath have been

transmitted on path P , and the later TSN tPHighestAckedOnPath

has been received successfully, TSN tMissing is probably lost.
Otherwise, there is nothing to do.

In the example above this means that TSN #9 would be
Fast Retransmitted if a new TSN #13 on path #1 would
have been acknowledged while TSN #9 still remains missing.

3.2 Congestion Window Updates

Figure 4: Congestion Window Update Challenge

When a new CumAck has been received, the congestion
window of SCTP [1] – as well as of TCP [15] – may grow. On
the reception of SACKs with the same CumAck’ed TSN, the
congestion window is left unchanged. An example is illus-
trated in figure 4, where endpoint A sends the chunks with
TSN #13 and TSN #14 over path #1 to endpoint B. The
chunks with TSNs #15 to #18 use path #2. Due to conges-
tion and reordering, the chunks with TSNs #14 and #17 do
not arrive before a SACK chunk is sent back to endpoint A.
This SACK contains a CumAck for TSN #13 (i.e. all chunks
up to TSN #13 have been received successfully) and Gap
Acknowledgements for the TSNs #15, #16 and #18 (i.e.
the TSNs #14 and #17 are still missing).

If endpoint A used the congestion window update strategy
of standard SCTP, it would see an increase of the CumAck
to #13. That is, the SACK has acknowledged one TSN on
path #1 and the sender may grow the congestion window
of path #1. However, the congestion window on path #2
would not increase, since TSN #14 – which has been sent
on the other path – is still unacknowledged. Also, the con-
gestion window handling of later SACKs will only take care
of newly acknowledged TSNs. That is, when the missing
TSNs are eventually acknowledged later, the window must
not grow. This restriction is necessary to avoid sudden in-
creases of the congestion window leading to bursts of data.

In order to improve the efficiency of CMT-SCTP, the Con-
gestion Window Update for CMT (CUC) strategy [2] takes
the existence of different paths into account. On reception
of a SACK, it looks for the earliest outstanding TSN on
each path. For the example in figure 4, this is TSN #14 on
path #1 and TSN #17 on path #2. Therefore:

1. On path #1, the SACK has newly acknowledged the
TSN #13 – i.e. one new TSN has been acknowledged
and the congestion window on path #1 may grow ac-
cordingly.

2. On path #2, there are no outstanding TSNs smaller
than TSN #15; the TSNs #15 and #16 have been ac-
knowledged newly. Therefore, the congestion window
on path #2 may also grow accordingly.

Since the CUC strategy maintains a virtual CumAck for
each path, it is also denoted as Pseudo CumAck. A further



Figure 5: Delayed Acknowledgement Challenge

improvement denoted as CUC version 2 (CUCv2) [2] also
takes care of TSNs being retransmitted. When there is a
retransmission of a TSN on another path than the original,
CUC cannot reliably keep track of the Pseudo CumAck of
either path. Therefore, CUCv2 makes a distinction between
TSNs which have been transmitted only once and TSNs hav-
ing been retransmitted. A second Pseudo CumAck – de-
noted as RTX Pseudo CumAck – is maintained; whenever
one of these two Pseudo CumAcks is increased, the conges-
tion window may grow.

3.3 Delayed Acknowledgement
When DATA chunks arrive in sequence, SCTP does not

immediately send a SACK chunk for acknowledgement. In-
stead, it realizes the Delayed Ack algorithm defined by [5]
(similar to TCP) in order to reduce overhead traffic. But
for reordered chunks, a SACK is transmitted immediately.
By default, the reception of 3 SACKs for the same TSN
triggers a Fast Retransmission to retransmit a lost chunk (a
loss on reordering is likely in the non-CMT case). For CMT,
however, reordering is frequent and usually does not imply
a loss. But each received out-of-order DATA chunk would
require the immediate transmission of a SACK chunk. Un-
necessary Fast Retransmissions are avoided by SFR already
(see subsection 3.1), but the increased SACK traffic over-
head remains.

In order to cope with the CMT inefficiency, the Delayed
Acknowledgement for CMT (DAC) strategy [2] simply de-
lays all SACK transmissions. However, this would also delay
the recovery of a real packet loss which is triggered by the
SACKs. An example is provided in figure 5:

1. TSN #20 is lost. No SACK chunk will be transmitted.

2. The TSNs #21 and #22 are received and acknowl-
edged by a SACK chunk. Endpoint A recognises the
missing TSN #20 for the first time.

3. The TSNs #23 and #24 are received and another
SACK chunk is sent. Endpoint A recognises the gap
for the second time.

4. The TSNs #24 and #25 are received and SACK’ed.
Endpoint A sees the gap for the third time. This is
the default threshold [1] for a Fast Retransmit of the
lost chunk.

That is, the loss is detected after six more chunks have been
sent. Using standard SCTP behaviour, it would have been
detected after only three chunks (the third SACK would
have been sent after receiving the out-of-order TSN #23).

DAC solves the problem by two steps [2]: First, the re-
ceiver has to put the number of TSNs received since sending
the previous SACK chunk into each SACK chunk. Then,
the SACK handling procedure of SFR (see subsection 3.1)

for a missing TSN tMissing can be modified. An incoming
SACK is handled as follows:

• If all newly acknowledged TSNs have been transmitted
over the same path:

– If there are newly acknowledged TSNs tL and tH
so that tL < tMissing < tH , the missing count is
incremented by one.

– Else if all newly acknowledged TSNs tN satisfy
the condition tMissing < tN , the missing count is
incremented by the number of TSNs reported in
the SACK chunk.

• Otherwise (i.e. there are newly acknowledged TSNs on
different paths), the missing count is incremented by
one (like for standard SCTP [1]).

For the example shown in figure 5, applying DAC means
that TSN #21 is GapAck’ed with a CumAck for TSN #19.
Since this SACK chunk contains newly acknowledged TSNs
for both paths, the missing counter for TSN #20 will be
increased to 1. After receiving the second SACK chunk –
containing the newly GapAck’ed TSNs #22 and #23 and a
count of 2 TSNs since the last SACK – the missing counter
for TSN #20 grows by 2 to 3. By default, this is the thresh-
old for a Fast Retransmission. That is, this retransmission is
triggered after 3 TSNs – which is as quickly as in a non-CMT
scenario.

4. OUR CMT-SCTP SIMULATION MODEL
We have realized the CMT-SCTP functionalities described

in section 3 in an experimental version of the SCTP mod-
ule [4] in INET. In the following subsections, we will provide
an overview of the implementation.

4.1 Module Parameters
The existing SCTP module has been extended by CMT-

SCTP, i.e. all SCTP-based INET simulation models could
make use of CMT. In order to configure the CMT-SCTP
functionality, the parameters summarized in table 1 have
been added. By default, CMT is turned off (i.e. allowCMT
set to “false”). Unless explicitly changing allowCMT to
“true”, the new SCTP module behaves exactly like the old,
non-CMT model.

The parameters cmtUseSFR and cmtUseDAC enable or
disable the SFR (see subsection 3.1) and the DAC (see sub-
section 3.3) optimizations. The useful default is to turn
on both, of course. cmtCUCVariant selects the congestion
window update algorithm (see subsection 3.3): “normal” as
for standard SCTP [1], “pseudoCumAck” (CUC) or “pseu-
doCumAckV2” (CUCv2 – the useful default).

The last parameter – cmtSendAllVariant – controls the
path selection for outgoing DATA chunks. If there is no
path explicitly specified for a chunk, the setting “smallest-
LastTransmission” chooses the least recently used path (this
is the default). This results in a round-robin selection. A
setting of “largestSpace” uses the path whose congestion
window can currently accept the largest number of bytes,
“largestSSThreshold” selects the path having the highest
Slow Start Threshold and “largestSpaceAndSSThreshold” is
a combination of both settings.

4.2 TCPDump and ExtInterface Interaction
The TCPDump module [16] of the INET framework pro-

vides to write the packet trace of an IP node into a dump
file. Such dump files can be processed by packet analyzer
tools like Wireshark [17]. The ExtInterface module [16]



Parameter Functionality Default Setting

allowCMT Enable/Disable CMT false
cmtUseSFR Enable/Disable SFR true
cmtUseDAC Enable/Disable DAC true
cmtCUCVariant Congestion Window Update Strategy pseudoCumAckV2
cmtSendAllVariant Path Selection Policy smallestLastTransmission

Table 1: CMT Parameters for the SCTP Module

allows for connecting simulated IP nodes to real network in-
terfaces. That is, simulated applications on IP nodes can
communicate with real applications on real IP endpoints in
the Internet. The SCTP module [4] as well as our CMT-
SCTP improvement are also compatible with the TCPDump
and ExtInterface modules. In particular, we have inten-
sively used the SCTP packet trace analysis functionalities
of Wireshark during development and debugging.

4.3 Multi-Homed Auto-Routing Module
Setting up a test network with manual IP address and

routing configuration is a rather time-consuming and error-
prone task. Therefore, the INET framework already pro-
vides two auto-routing modules (see [18]): FlatNetworkCon-
figurator and NetworkConfigurator. These modules config-
ure IP addresses to the network interfaces and apply Dijk-
stra’s Shortest Path algorithm to set routing tables. How-
ever, the existing modules are not aware of multi-homing.
Depending on the configuration, a path #1 which is inten-
tionally longer will not be used in favor of a shorter path #2
(see figure 3 for an example).

To overcome the described challenge, we have added a new
auto-routing module called MultihomedFlatNetworkConfig-
urator. For each link, the new channel parameter netID can
be specified. The netID provides the identification for an
independent network. A network interface connected to a
link belongs to the corresponding network. For the routing
table computation, the Dijkstra algorithm is applied on the
network corresponding to each ID separately. That is, the
paths within one network will not interfere with paths in
another network.

But sometimes, links shared between different networks
are intended. This behaviour is supported by the special
setting of netID=0. When the routing is computed for a
certain network ID n, it will contain all interfaces and links
having set netID=n or netID=0.

An example network is presented in figure 6, its corre-
sponding NED file is shown in listing 1. This scenario is
used in an evaluation of CMT-SCTP for MPI (Message
Passing Interface) applications (see also [3]). Line 5 im-
ports the new MultihomedFlatNetworkConfigurator mod-
ule; it is instantiated in lines 34 to 37. Similar to the
auto-routing modules already available in INET, its object
does not require any connections. The test network consists
of a configurable number of hosts numHosts (see lines 26
to 29), connected to a configurable number of independent
networks numNetworks. Each network has its own router
(see lines 30 to 32), which constitutes the centre of a star
topology. The channel for the links (see lines 18 to 24) de-
fines the attribute netID, which is used in line 40 to define
the independent networks.

4.4 NetPerfMeter Test Application
In order to evaluate CMT-SCTP, we had first used the

SCTPClient and SCTPServer modules provided by INET.
However, these modules lack of statistics features and were
therefore not really useful for performance analyses. Also,
the protocol support of these programs is restricted to SCTP.

Figure 6: A Dual-Homed Test Network

To compare results to UDP or TCP, other applications (like
TCPBasicClientApp and TCPSinkApp, which are part of
the INET TCP application modules) – with different and
incompatible parametrization – would have been necessary.
We have therefore developed our own performance metering
application module NetPerfMeter.

Similar to the real Linux/FreeBSD-based performance me-
tering program NetPerfMeter [19], the NetPerfMeter ap-
plication module provides the unidirectional and bidirec-
tional transmission of saturated and non-saturated flows as
well as statistics recording. Its parameters are summarized
in table 2. At a given time (connectTime), a NetPerfMeter
client (activeMode=true) establishs a connection using the
given protocol (protocol, i.e. “SCTP”, “TCP” or “UDP”) to
a NetPerfMeter server (activeMode=false) at a given IP ad-
dress (remoteAddress) and port (remotePort). After a given
time (startTime), the transmission starts; its statistics may
be reset after a certain time span (resetTime) to cut off
startup behaviour. NetPerfMeter writes its flow statistics in
form of scalars at the end of the measurement (stopTime)
before connection teardown.

The outgoing data is transmitted as frames in a given in-
terval (frameRate) with a given size (frameSize). Both pa-
rameters are volatile. Frames are segmented into messages
with a given maximum size (maxMsgSize). The special set-
ting of frameSize=0 turns the flow off; frameRate=0Hz con-
figures a saturated sender. A saturated sender means that it
tries to send as much data as possible. The message queue
is therefore filled with up to queueSize messages. Currently,
a saturated sender is only possible for SCTP, since the TCP
and UDP modules of INET have no support for finite trans-
mission queues yet. A work-around for TCP is to ensure a
sufficient fill level by using a high frame size. For SCTP,



Listing 1 The NED File for the Dual-Homed Test Network

1 package i n e t . examples . s c tp . ipc t e s t cmt ;
2

3 import i n e t . nodes . i n e t . DumpRouter ;
4 import i n e t . nodes . i n e t . StandardHost ;
5 import i n e t . network layer . autorout ing . MultihomedFlatNetworkConfigurator ;
6 import ned . DatarateChannel ;
7

8 network IPCNetwork
9 {

10 parameters :
11 @display ( ”bgi=maps/europe , s ; bgb=1024 ,768 ” ) ;
12

13 int numHosts ;
14 int numNetworks ;
15 . . .
16

17 types :
18 channel path extends DatarateChannel
19 {
20 // For new MultihomedFlatNetworkConfigurator : path e i t h e r be l ongs to
21 // a l l networks ( netID=0) or a s p e c i f i c network ( netID=n , n>0).
22 int netID = default ( 0 ) ;
23 datarate = 1Gbps ;
24 }
25 submodules :
26 host [ numHosts ] : StandardHost {
27 parameters :
28 @display ( ”p=112 ,84 , r ing , 4 00 , 3 00 ; i=dev i ce /mainframe vl ” ) ;
29 }
30 route r [ numNetworks ] : DumpRouter {
31 parameters :
32 @display ( ”p=462 ,384 , r , 1 0 0 ; i=abs t r a c t / r o u t e r l ” ) ;
33 }
34 c on f i gu r a t o r : MultihomedFlatNetworkConfigurator {
35 parameters :
36 @display ( ”p=950 ,50 ” ) ;
37 }
38 connect i ons :
39 for j =0. . numNetworks−1, for i= 0 . . numHosts−1 {
40 host [ i ] . pppg++ <−−> path { netID=j +1; } <−−> route r [ j ] . pppg++;
41 }
42 }

Figure 7: The Proof-of-Concept System Setup

a given fraction of the messages may be sent in unordered
(unordered) and PR-SCTP unreliable modes (unreliable).
For each message, its ordering and reliability mode is se-
lected randomly according to the configured fractions.

5. OUR SIMULATION SETUP
In order to evaluate our CMT-SCTP module, we have set

up a simple test network as depicted in figure 7. A Net-
PerfMeter sender has transmitted data over a dual-homed
network to a NetPerfMeter receiver.

The following configuration parameters have been used,
unless otherwise specified:

• The sender has been saturated (i.e. it tried to transmit
as much data as possible), the message size has been
1,452 bytes at an MTU of 1,500 bytes (i.e. the DATA
chunk packets have fully utilized the MTU [1]). All
messages have used the “unordered” transport mode.
The advertised receiver window has been large enough
to accept all data generated by the sender.

• After association establishment and transmission start,
the actual throughput measurement has been started
after 19s. The duration of the throughput measure-
ment has been 30s.

• The bandwidth of the PPP links between the routers
of each path has been configurable, their delay has
been 1ms (realistic for an Ethernet setup). All other
links and the routing have been delay-free. The bot-
tleneck network interfaces have used RED queues [20]
(wq = 0.002, minth = 20, maxth = 80, maxp = 0.02).

The SimProcTC [21] tool-chain has been utilized for the
parametrization and results processing. The results plots
in this paper show the average values of 32 runs and their
95% confidence intervals.

For comparison, we have also set up a similar scenario in
reality, consisting of PCs running FreeBSD 8.0 and being
interconnected by Gigabit Ethernet links. The FreeBSD 8.0



Parameter Functionality Default Setting

connectTime Absolute Time of Connection Establishment 0s
startTime Relative Time of Transmission Start 1s
resetTime Relative Time of Measurement Start 5s
stopTime Relative Time of Measurement Stop 30s
activeMode Client Mode (true) or Server Mode (false) true
protocol Transport Protocol (“SCTP”, “TCP” or “UDP”) “SCTP”
localAddress Local IP Address (“” for “Any” Address) “”
localPort Local Port 9000
remoteAddress Remote IP Address (Client Mode only) “”
remotePort Remote Port (Client Mode only) 9000
primaryPath Primary Path (SCTP only) “”
frameRate Frame Rate (0Hz = saturated sender) 10Hz
frameSize Frame Size (0B = flow turned off) 1452B
maxMsgSize Maximum Message Size (SCTP and UDP only) 1452B
queueSize Queue Size (currently SCTP only) 1000
unordered Fraction of Unordered Messages (SCTP only) 0.0
unreliable Fraction of Unreliable Messages (PR-SCTP only) 0.0

Table 2: Parameters for the NetPerfMeter Module

kernel provides an experimental CMT-SCTP implementa-
tion, which has been be activated by sysctl settings. The
performance metering application NetPerfMeter [19] has
been applied to measure the SCTP payload throughput.
Bandwidth limitation has been introduced in the routers
by applying Dummynet [22], which is the network test in-
frastructure of FreeBSD.

6. PROOF OF CONCEPT EVALUATION
To show the effects of CMT transport, we have simultane-

ously varied the path bandwidth ρ of each path in our sim-
ulation setup as well as in the real FreeBSD scenario. The
payload throughput results for the simulation are shown on
the left-hand side of figure 8. When CMT is turned off (i.e.
CMT=false; denoted by a red line on a colour plot), the pay-
load throughput linearly scales up to about 95 Mbit/s for a
link bandwidth of ρ=100 Mbit/s. This is the expected be-
haviour. Turning on CMT (i.e. CMT=true; denoted by blue
lines on a colour plot), a bandwidth of around 190 Mbit/s is
achieved when SFR is turned on (i.e. SFR=true; denoted by
solid lines) and CUCv2 (i.e. χ=pseudoCumAckV2) is used.
As expected, turning SFR off (i.e. SFR=false; denoted by
dotted lines) results in a vast decrease of the throughput
– a significant amount of bandwidth is wasted by unnec-
essary Fast Retransmissions (see subsection 3.1). Also, it
can be seen that without an appropriate congestion window
growth behaviour for CMT (i.e. χ=normal), reordering –
and in consequence a non-growing congestion window (see
subsection 3.2) – leads to a reduced throughput.

For comparison, the results of a FreeBSD 8.0 measure-
ment are shown on the right-hand side of figure 8. Since the
FreeBSD kernel is intended for application usage and not
for research purposes, it does not contain options to turn
specific CMT features on or off. The plot therefore shows
the results for activated SFR and CUCv2 only. For a link
bandwidth of ρ=100 Mbit/s, CMT-SCTP (i.e. CMT=true;
denoted by a blue line on a colour plot), a payload through-
put of 188 Mbit/s is achieved vs. about 94 Mbit/s for CMT
turned off (i.e. CMT=false; denoted by a red line on a colour
plot). That is, the results obtained from the measurement
look similar to the simulation results. Note again that there
is no exact 1:1 mapping possible – due to the different system
setups. Nevertheless, is can be observed that our simulation
results are as expected and correspond to a real system setup
quite well.

7. CONCLUSIONS
With multi-homed sites becoming more and more com-

mon, there is a growing interest in utilizing all available
network interfaces of a system to improve its data trans-
fer throughput. The CMT-SCTP extension of SCTP pro-
vides this feature. In order to investigate the performance of
CMT-SCTP in detail, we have realized it as part of the INET
SCTP module. Also, we have developed an auto-routing
module for the easy configuration of multi-homed networks
as well as the performance metering application module Net-
PerfMeter. In a proof-of-concept simulation, we have shown
that our CMT-SCTP model works as expected. Further-
more, its performance corresponds to a real FreeBSD-based
system setup.

As part of our ongoing work on CMT-SCTP, we are cur-
rently examining its performance in more detail. Particu-
larly, we are analysing and improving the fairness of its con-
gestion control. Another important topic is its performance
in heterogeneous network scenarios, where the Quality of
Service properties of the paths differ. The goal of our on-
going work is to provide comprehensive configuration guide-
lines for application developers and users of CMT-SCTP.
Finally, we also intend to bring the results of our research
into application by contributing to the ongoing IETF stan-
dardization process for SCTP.
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[4] I. Rüngeler, M. Tüxen, and E. P. Rathgeb. Integration
of SCTP in the OMNeT++ Simulation Environment.
In Proceedings of the 1st OMNeT++ Workshop,
Marseille/France, March 2008. ISBN
978-963-9799-20-2.

[5] M. Allman, V. Paxson, and W. Stevens. TCP



Figure 8: SCTP Application Payload Throughput Results

Congestion Control. Technical Report 2581, IETF,
April 1999.

[6] Damon Wischik, Mark Handley, and Marcelo Bagnulo
Braun. The Resource Pooling Principle. ACM
SIGCOMM Computer Communication Review,
38(5):47–52, 2008.

[7] T. Dreibholz, M. Becke, J. Pulinthanath, and E. P.
Rathgeb. Applying TCP-Friendly Congestion Control
to Concurrent Multipath Transfer. In Proceedings of
the IEEE 24rd International Conference on Advanced
Information Networking and Applications (AINA),
Perth/Australia, April 2010.

[8] R. Stewart, M. Ramalho, Q. Xie, M. Tüxen, and
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