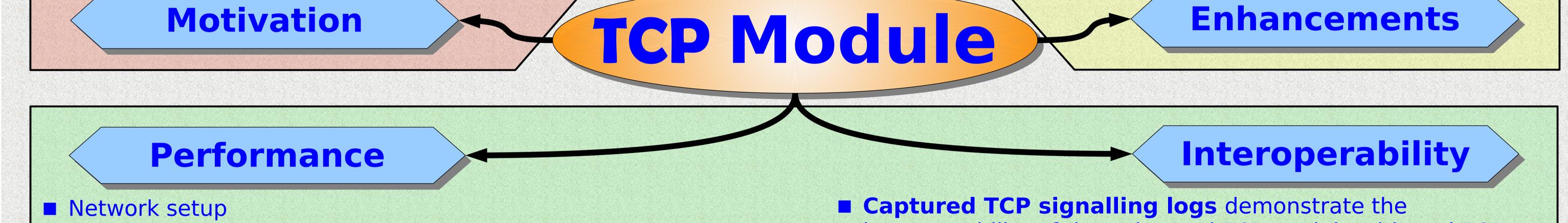
Enhancement of the TCP Module in the OMNeT++/INET Framework

UNIVERSITÄT DUISBURG ESSEN

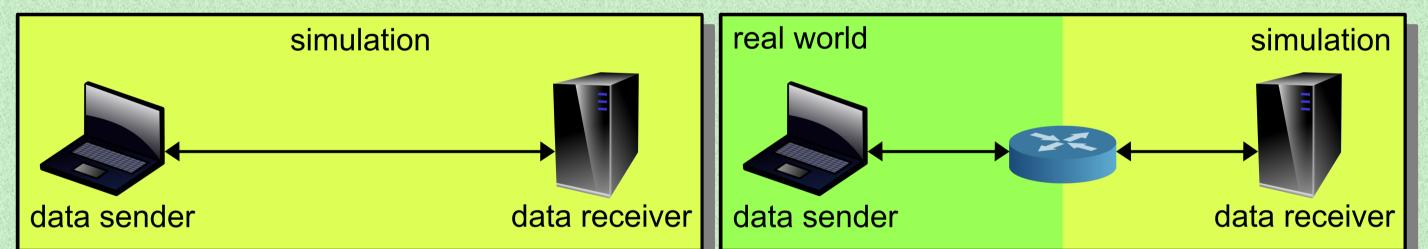
The Internet

- is the largest computer network in the world
- most of the Internet traffic is handled by the Internet Protocol (IP) and the Transmission Control Protocol (TCP)
- the evolution of TCP is still ongoing and there exist a variety of different TCP algorithm variants
- The INET Framework for OMNeT++
 - includes IP-based simulation models e.g. IP, UDP, TCP, SCTP

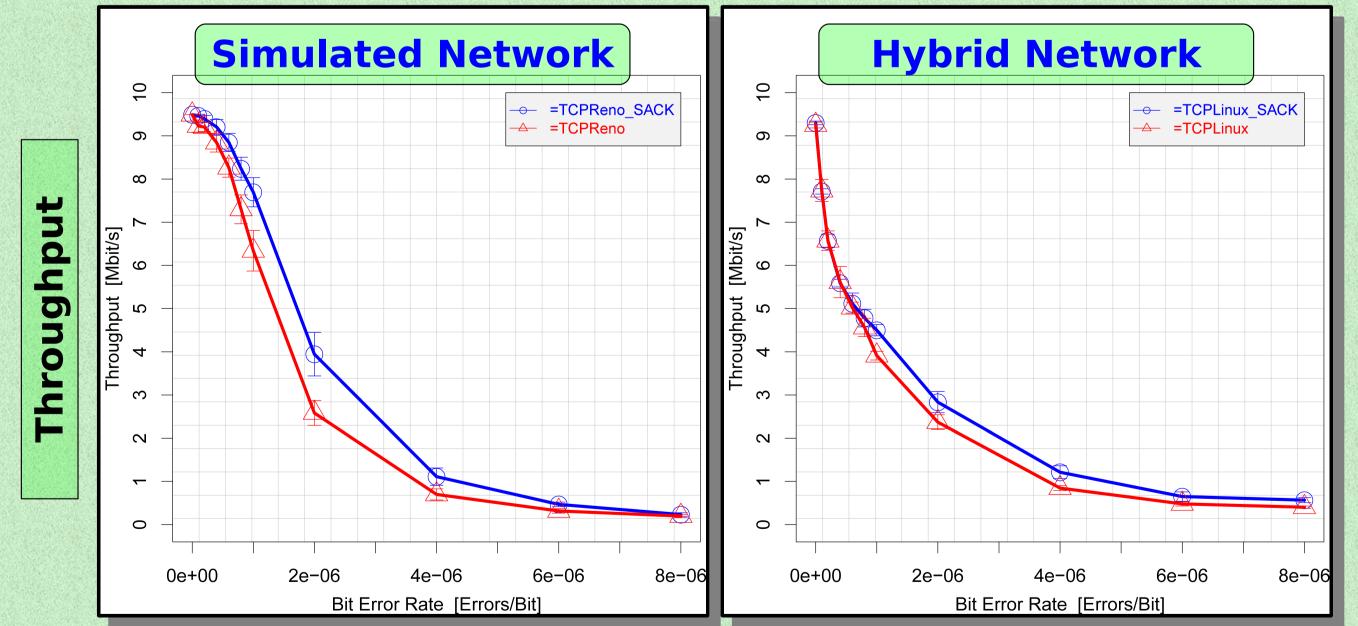
The TCP Module


 used a fixed TCP header length of 20 bytes and options (e.g. SACK) were not supported

Header Extension


Segment format has been changed to support TCP options

SACK Option


- Only if both nodes send a SACK Permitted option during connection setup, SACK (RFCs 2018, 2883) will be enabled
- SACK-based Loss Recovery algorithm (RFC 3517) has been integrated into TCPReno
- Flow Control Enhancements
- Added missing parts of the Flow Control mechanism
- TCPDump Module (to capture PCAP files)
 - has been extended to convert the TCP segment format of INET (including the newly implemented TCP options) from/to binary (network byte order) TCP segments
- The SACK option is part of common TCP implementations and is – according to RFC 4614 – a "recommended enhancement" for TCP
- -The following Flow Control related parts were missing:
 - A finite receive buffer size was not modelled
 - The data receiver was always offering the maximum receiver Window size
 - The data receiver was not able to send a Zero Window
 - The Persist Timer was missing
 - A function to send a Window Probe was implemented but has never been invoked
- → Allows for TCP signalling analyses with external tools
- ExtInterface Module (to connect network nodes)
 - has been extended to support TCP communications
 - → Supports connecting the TCP module with real, external TCP implementations
- Further Enhancements
 - RFC 3042 Limited Transmit (Loss Recovery algorithm)
 - RFC 3390 Increasing TCP's Initial Window
 - RFC 3782 NewReno (Loss Recovery algorithm)

- MTU = 1500B data rate = 10Mbit/s
- -MSS = 1452B $delay = 0.565 \mu s$
- user data = 100MiB bit error rate = variable
- test duration = 60s

Simulation results

interoperability of the enhanced TCP module with real TCP implementations (e.g. Linux)

Vo	Time	Source	Destination	Protocol	Info									
	10.000000	192.168.0.111	172.0.1.111	TCP	45315 >									
	<u> </u>	172.0.1.111	192.168.0.111	TCP	10021 >							.en=0 №	4SS=1452	2
	3 0.007263	192.168.0.111	172.0.1.111	TCP	45315 >	10021	[ACK]	Seq=1 /	Ack=1 Wi	n=5808	Len=0			
			III											
ÞF	lags: 0x12	(SYN, ACK)												
Window size: 65535														
⊳⊂	hecksum: 0x	c838 [correct]												
🖻 Options: (8 bytes)														
Maximum segment size: 1452 bytes														
	NOP													
	NOP													
	SACK permit	ted												

The SYN,ACK segment contains a SACK-Permitted option to enable SACK

No	Time	Source	Destination	Protocol	Info					
99	0.245918	172.0.1.111	192.168.0.111	TCP	10021 > 45315	[ACK]	Seq=1 Ack=1	82977 Win=65535	Len=0	
100	0.247596	172.0.1.111	192.168.0.111	TCP	10021 > 45315	[ACK]	Seq=1 Ack=1	85881 Win=65535	Len=0	
101	0.248681	172.0.1.111	192.168.0.111	TCP	[TCP Dup ACK	100#1]	10021 > 453	15 [ACK] Seq=1	Ack=185881	Win=65535 L
•			III							
⊳ Fla	ugs: 0x10	(ACK)								
Window size: 65535										
⊳ Che	ecksum: Ox	(973b [correct]								
🛛 Opt	ions: (12	2 bytes)								
N	OP									
N	OP									
⊳s	АСК: 1873)	33-188785								

- Duplicate ACKs contain SACK options to allow TCP sender to recover more effectively when multiple segments are lost
- The enhanced TCP module has already been integrated into the INET framework and is accessible at:

Bit Error Rate

http://github.com/inet-framework/inet

Some important features of modern TCP implementations - particularly SACK and a complete Flow Control - have been added to INET's TCP module

Our Research	Flow Routing	SCTP	RSerPool
Unit Research Image: Contraction Image: Contratitet Image:	 Research QoS Device Concept Contributions to Standardization IETF (Flow Identification) ITU-T and ETSI (QoS Signalling) 	 Evaluation, Optimization and Improvement Concurrent Multipath Transfer (CMT) Performance and Security Open Source Implementation SCTPLIB Contributions to IETF Standardization Secure-SCTP (Individual Submission) TLS over SCTP (RFC 3436) 	 Evaluation, Optimization and Improvement Various Contributions to Major Conferences Open Source Implementation <i>RSPLIB</i> Contributions to IETF Standardization RFC 5351, RFC 5356, RFC 5525 Multiple Internet Drafts

OMNeT++ Workshop 2010, Málaga/Spain

Thomas Reschka, T.Reschka@gmx.de

19 March 2010